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Self-accelerating death of reacting species: sharp transition
in long-time relaxation dynamics

Boris M Shipilevsky
Institute of Solid State Physics, Chernogolovka, Moscow district, 142432, Russia
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Abstract. Recently it has been discovered that an open system, where speciesA andB diffuse
from the bulk of a restricted medium and die on its surface by the reactionA+B → 0, exhibits
a new type of kinetic transition: above some threshold difference in the initial numbers of
particles,1c, instead of the usual deceleration, the process of their death starts to accelerate
autocatalytically. Here we study long-time relaxation dynamics of the system beyond the
acceleration threshold and find it surprisingly rich. The main result is asharp transitionat
the critical value1r, above which the synchronism in relaxation of the species is destroyed and
the asymptotics of their death loses its universality.

In the last few decades, studies of nonlinear reaction–diffusion (RD) systems have been
developed into one of the most popular and fascinating fields of nonlinear dynamics. The
scope of such systems involves different branches of physics, chemistry and biology, and
extends from complex autocatalytic systems, displaying spontaneous formation of Turing
structures and chemical turbulence, to most simple ones with the bimolecular reaction
A + B → 0 displaying dynamical clustering [1]. So far, however, the main attention
has focused on RD systems, in which both reaction and diffusion proceed in thebulk of
the extended medium. In contrast, we have recently demonstrated that in another wide class
of RD systems, where reaction and diffusion arespatially separated; the interplay between
reaction and diffusion acquires qualitatively new features and leads to new dynamics of the
bimolecular reactionA + B → 0, which is the most abundant one in nature [2]. Namely,
we have found that once particlesA andB diffuse at different mobilities from the bulk
of the restricted medium onto the surface and die on it by the reactionA + B → 0, there
should exist some threshold difference in the initial numbers ofA and B particles,1c,
above which the process of their death, instead of the usual deceleration for biomolecular
reactions, starts toaccelerate autocatalytically.

The deceleration–acceleration transition has been shown to arise as a result of
competition in the slow species diffusion–reaction chain, which leads to ‘switching on’
of the loop of positive feedback above the threshold level1c, and this can be interpreted
as anew type of self-organizationin open nonlinear systems. However, while the adiabatic
approximation developed allows one to understand clearly the mechanism of the transition
and to calculate exactly the critical transition point1c, the following important questions
remain open: How does the relaxation dynamics change with growth of1 beyond the
acceleration threshold, where the adiabatic approximation loses its applicability? How does
such an evolution depend on the ratio of species diffusivities? What is the role of the initial
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conditions? In this letter we answer these questions in the long-time asymptotic limit and
report on a new kinetic transition at some critical value1r, above which the synchronism in
relaxation of the species is destroyed and the asymptotics of their death loses its universality.

We consider a model in which speciesA andB are supposed to be initially uniformly
distributed in the bulk of an infinitely extended slab of thickness 2`. Both species diffuse
to the surface (X = ±`) and desorb as a result of the surface reactionAads+ Bads →
AB. The rate of the reaction is proportional to the product of surface concentrations
I = knAnB = κNAsNBs , where the rates of surface–subsurface exchange are supposed to
be rather high, so that quasi-equilibriumni = fiNis between concentrations on the surface
and in the subsurface layer is always sustained. Because of planar spatial homogeneity the
system is effectively one-dimensional and the boundary conditions for diffusion equations
can be found from the equality of diffusionID and desorptionI flux densities at the surface
ID|s = I†. Then introducing the index ‘H ’ (heavy) for the slower diffusing species and
the index ‘L’ ( light) for the faster one the boundary value diffusion problem of species
evolution reads [2] (by symmetry we consider the interval [0, `] only)

∂CH/∂τ = ∇2CH ∂CL/∂τ = (1/p)∇2CL (1a)

∇CH |s = (1/p)∇CL|s = −CHsCLs (1b)

with ∇Ci |x=0 = 0 and the initial conditionsCi(x, τ = 0) = Ci(0). Here∇ ≡ ∂/∂x,
x = X/` ∈ [0, 1] is the non-dimensional coordinate,τ = DHt/`

2 is the non-dimensional
time, p = DH/DL 6 1 is the ratio of species diffusivities,Ci(x, τ ) = Ni/N∗ are the
reduced concentrations, andN∗ = DH/κ` is the characteristic concentration scale, from
which diffusion starts to play an essential role. Boundary conditions (1b) reflect the fact
that particles disappear in pairs only and, therefore, the difference in the numbers of H and
L particles remains constant

〈CH 〉 − 〈CL〉 = 1 = constant

i.e. the excess amount stays ‘inert’ in the bulk (here〈Ci〉 =
∫ 1

0 Ci dx = Ni/N∗ are the total
reduced numbers of particles per unit of slab surface andN∗ = DH/κ is the characteristic
scale of the number of particles). This ‘inert’ part of the majority species1 = δN /N∗
acts as a control parameter, whereas its ‘active’ (capable of desorbing) partN = Npair/N∗,
which equals the total number ofH–L pairs, acts as the only variable.

Reference [2] focused on the main characteristics of relaxation dynamics—the lifetime
of the pairs

τ−1
pair = −d lnN/dτ

in the case1 > 0, when heavy particles are in excess. Here the number of pairs is
determined by the number ofL particles,N = 〈CL〉, so the dynamics of their death depends
crucially on the behaviour of the surface concentration of H particles,CHs . In the limit of
p → 0, when the distribution ofL particles in the bulk remains uniform due to their fast
diffusion and the lifetimeτ−1

pair = CHs , the key results of [2] may be formulated as follows.
(i) When parameter1, playing effectively the role of the Rayleigh number, achieves

the threshold value1c = ω0 = π2/4 (ω0 is the main eigenfrequency of the diffusion field

† A strict condition of balance of fluxes has the formJD
i |s = J + di Ċis , where the parameterdi = fi/` shows

the relative capacity of the surface layer [2]. Therefore, equality of fluxesJD
i |s = J takes place within the

limit di → 0, when the surface layer capacity can be neglected. At comparatively high temperatures the surface
segregation coefficient is evaluated usually asf ∼ (1–102)a, wherea is the lattice parameter and thus, for samples
of macroscopic size, such an approximation due to the smallness of the parameterd is as a rule fulfilled with good
reserve.
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relaxation under absorbing boundary conditions), the system undergoes a kinetic transition
from the deceleration phase(CHs↓) to the state where the surface concentration of H
particles and, therefore the rate of death, only increase with timeCHs↑ (acceleration phase).

(ii) If ĊHs does not change too fast|ζ | = |C̈Hs/ĊHs | . ω0 (adiabatic approximation)
the system after a short transient stage goes onto the universal trajectory

ĊHs = (1− ω0)α0(N)(1− η(N)) (2)

(α0 = ω2
0N(N + 1)/(N + ω0)

3 and η � 1), along which, starting fromN → ∞, the
rateĊHs beyond the threshold grows together withCHs (the growth ofCHs accelerates the
drop of N → the drop ofN accelerates the growth ofCHs and so on), i.e. the process of
death developsautocatalytically(phenomenon of self-accelerating death), and then reaching
a maximum atN ∼ 1, it decreases infinitely, being positive up toN→ 0. According to (2),
asymptotically far beyond the transition point the adiabaticity condition is violated rapidly
(|ζ ||τ→∞ ∼ 1); therefore, applicability of (2) is limited by the values of1/1c ∼ 1.

In this letter we present an approach free from this restriction. More specifically, we
derive exact expressions for leading spatial modes, which describe the long-time relaxation
dynamics of the system at arbitrary values of1, and the ratio of species diffusivitiesp.

We start from the fact that, in the limitτ →∞, CHs → 1 and therefore the dominating
term in the light species decay asymptotics isCL(x, τ ) = L1 cos(qx) e−ωτ , where the
wavenumberq = √pω and the relaxation frequencyω of the leading mode is determined
as the least positive root of the equation [3]

1 =
√
ω/p tan(

√
pω). (3)

AssumingL1 = √pω/ sin(
√
pω) (L1 = 1 atp → 0), that is, shifting for convenience the

origin of time so that〈CL〉|τ→∞ = e−ωτ , we find asτ →∞ the problem forCH(x, τ ) with
the boundary condition

∇CH |s = −ω e−ωτ . (4)

The solution of (1a) and (4) atω 6= π2n2 (n = 1, 2, . . .) has the form

CH = 1+H1 cos(
√
ωx) e−ωτ + S (5)

whereH1 = √ω/ sin(
√
ω), and the sumS = ∑∞

n=1Sn cos(nπx) e−n
2π2τ describes the

eigenmodes of the diffusion field relaxation under neutral (non-flux) boundary conditions
(∇S|s = 〈S〉 = 0). According to (5) theH -field asymptotics consist of the terms generated
by the reaction and of those associated with the relaxation of the distribution of ‘pairless’
H particles, which carry information on the prehistory of the system. Atω = ωn = π2n2

the reaction excites a ‘resonance’ in the correspondingS-mode (H1→∞) and the solution
acquires the form

Cr
H = 1+Rn(τ cos(nπx)+ (1/2πn)x sin(nπx)) e−n

2π2τ + S (6)

whereRn = (−1)n+12π2n2. The following important results immediately follow from
equation (5).

(i) Equation (5) reproduces rigorously a conclusion on the existence of a deceleration–
acceleration kinetic transition for anarbitrary p < 1 at the threshold value

1c = (π/2√p) tan(π
√
p/2).

Indeed, according to (5)δCHs |τ→∞ = CHs − 1 = −ω−1 ˙CHs = H1s e−ωτ , where
H1s = √ω cot

√
ω at the critical pointωc = ω0 = π2/4 changes sign (CHs↓ → CHs↑),

which results in acceleration of the death of pairs (see below).
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Figure 1. 1–p diagram of deceleration–acceleration and synchronous relaxation–asynchronous
relaxation kinetic transitions.

(ii) Equation (5) provides the key result of the present paper, which reads that, due
to competition between the main ‘reaction’ modeH1 cos(

√
ωx) e−ωτ and the main ‘non-

flux’ mode S1 cos(πx) e−π
2τ with 1 growing beyond the acceleration threshold1c, the

system undergoes anew kinetic transitionfrom the state in which the‘reaction driven’
relaxation dominates asymptotically to that in which‘non-flux’ or ‘internal’ relaxation of
theH -field dominates:H1 cos(

√
ωx) e−ωτ → S1 cos(πx) e−π

2τ . This transition takes place
at the critical valueωr = π2, i.e. at the critical number of ‘pairless’ particles

1r = (π/√p) tan(π
√
p).

According to (3)ωmax= ω|1→∞ = π2/4p, so the transition point can be achieved only if
the ratio of diffusivities is less than the critical valuepr = 1/4 (figure 1).

To clarify the main features of the transition we write, according to (5),J = CHsCLs =
ω e−ωτ + J2 e−2ωτ + J∗ e−(π

2+ω)τ + · · · with unknown coefficientsJ2 andJ∗. Apparently,
each term in the asymptoticsJ operates as an additive ‘sink’ of the powerJ ′ e−ω′τ , which
should generate a diffusive response of the formL′ cos(

√
pω′x) e−ω

′τ for L species and
of the formH′ cos(

√
ω′x) e−ω

′τ for H species. Extending this procedure and equalling the
coefficients at similar exponents in (1b), it is easy to determine the sequence of the first two
leading modes inL andH asymptotics and, therefore, to obtain the asymptotics ofτ−1

pair.
Below the transition pointω < π2(1 < 1r) we find

CL = L1 cos(
√
pωx) e−ωτ + L2 cos(

√
2pωx) e−2ωτ (7a)

CH = 1+H1 cos(
√
ωx) e−ωτ +

{
H2 cos(

√
2ωx) e−2ωτ

S1 cos(πx) e−π
2τ

(7b)

τ−1
pair = ω + P e−ωτ + · · · (7c)

where L2 = pωH1s/Q(
√

2pω)1, Q(z) = z sinz − p1 cosz, H2 = L2 sin(
√

2pω)/√
p sin(

√
2ω) andP = L2 sin(

√
2pω)
√
ω/2p.
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Beyond the transition pointω > π2(1 > 1r) we find

CL = L1 cos(
√
pωx) e−ωτ + S∗ cos(

√
pω∗x) e−ω∗τ (8a)

CH = 1+ S1 cos(πx) e−π
2τ +

{
H1 cos(

√
ωx) e−ωτ

S2 cos(2πx) e−4π2τ
(8b)

τ−1
pair = ω + P∗ e−π

2τ + · · · (8c)

whereS∗ = −pωS1/Q(
√
pω∗)1, P∗ = π2S∗ sin(

√
pω∗)/

√
pω∗ andω∗ = ω + π2.

We see that in the ‘reaction’ phase (7) bothL and H fields asymptotically relax
synchroneuosly as∼e−ωτ and go into a universal distribution at whichδCHs |N→0 = H1sN
and δτ−1

pair|N→0 = PN depend only on the current number of pairsN at an arbitrary
initial distribution of species. At the critical point1c, both P and H1s change sign
(+ → −), i.e. at anyp the CHs↓ → CHs↑ transition ‘switches’ the system over
to the acceleration state:τ−1

pair↓ → τ−1
pair↑. It is essential that exactly at the critical

point 1c, where an adiabatic approximation is inapplicable, it follows from (7b) that
δCc

Hs |τ→∞,N→0 = −S1 e−π
2τ = −S1N4. Correspondingly, due toLc

2 = Hc
2 = Hc

1s = 0
from (8c) instead of (7c), it follows that (δτ−1

pair)c|τ→∞,N→0 = Pc
∗(S1) e−π

2τ = Pc
∗(S1)N4.

Hence, exactly at the critical point1c relaxation ofδCHs and δτ−1
pair proceeds much faster

than before and after one

N→ (N4)c→ N (9)

and in the general case the critical relaxation trajectory depends on the prehistory of
the system. Beyond the transition point1 > 1r, relaxation of theH field becomes
autonomously∼e−π

2τ , that is the synhchronism ofH and L relaxation is destroyed.
The second important consequence of the transition is that the asymptotic law of the
δCHs |N→0 = −S1Nπ2/ω andδτ−1

pair|N→0 = P∗(S1)Nπ2/ω decayloses its universalitybecause
in the general caseS1 depends on the initial number of pairsN0 and on the initial
distribution of species. Exactly at the1r point, according to (6), the main non-flux mode
is excited ‘resonantly’ and we haveCr

H = 1r + 2π2 cos(πx)τ e−π
2τ + · · ·. Therefore,

δCr
Hs |τ→∞,N→0 = −2π2τ e−π

2τ = 2N ln N and, correspondingly,(δτ−1
pair)r|τ→∞,N→0 =

−π2P r
∗τ e−π

2τ = P r
∗N ln N with P r

∗ = π3√2p sin(π
√

2p)/Q(π
√

2p)1r.
Summarizing, we conclude that atp < pr = 1/4 the dynamical state with the

death of pairs accelerating along a universal asymptotic trajectory exists only up to a
‘resonant’ transition line1r(p), above which both the trajectory and character (acceleration
or deceleration) of the relaxation dynamics in the general case become dependent on the
initial distribution of the species and, in our case of a uniform initial distribution, on the
initial pair numberN0 (H1(1, p)→ S1(1, p,N0)). In this new ‘phase’, the relaxation rates
τ−1
Hs = −d ln |δCHs |/dτ |τ→∞ and� = −d ln |δτ−1

pair|/dτ |τ→∞ do not change with increasing
1,

� = τ−1
Hs =

{
ω 1c < 1 6 1r

π2 1 > 1r
(10)

i.e. while crossing the1r line the derivative d�/d1 varies in jumps down to zero and the
asymptotic law of theδCHs andδτ−1

pair decay changes as follows:

N→ (N ln N)r → Nπ2/ω. (11)

The imperative question arises now of what is the sign of the amplitudeS1 and how
doesS1 depend on the initial pair numberN0. We begin with the caseN0 → 0 and for
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Figure 2. (a) S1 as a function of1, calculated numerically atN0 = 1 (open circles),
γ0 = 1 (full circles) andγ0 = 10 (squares) forp = 0. The curve stands for the dependence
2/|σ |, σ = 1− π2/1; (b) S1 as a function ofγ0, calculated numerically at1 = 20 (open
circles) and1 = 102 (full circles) forp = 0. The lines show the dependencesS1(γ0) calculated
by (12).

simplicity consider thep → 0 limit. In this case, neglecting the termsO(N2
0), we write

CL = N = N0 e−1τ and therefore for1 6= π2n2 we get

CH = 1+ N0

√
1

sin
√
1

cos(
√
1x) e−1τ +

∞∑
1

S̃n cos(nπx) e−n
2π2τ .

Under a uniform initial distribution this immediately yields̃Sn = (−1)n+12N01/(1−π2n2)

and, after returning to the shifted time(1τ)|N→0 = − ln N, we find

S1 = 2Nσ
0/σ σ = 1− π2/1. (12)

According to (12), at the1r point the amplitudeS1 changes sign (− → +), i.e. above
the1r transitionS1 > 0. This means that asN0→ 0 above the1c threshold, the death of
pairs always accelerates, whereas at the critical pointSc

1 = −(2/3)N−3
0 the death of pairs is

decelerated in time. It would be natural to expect that under a uniform initial distribution the
diffusive flux in the bulk should always be directed towards the surface, and therefore above
1r we must haveS1 > 0 at any values ofN0. We have studied numerically the dependence
S1(N0) at 1 > 1r and it was a surprise to find that, starting fromγ0 = N0/1 = γ u

0 ' 1,
when the initial number of pairs becomes equal to that of ‘pairless’ particles, the amplitude
S1 stops (with an exponential accuracy) being dependent on the initial number of pairs
(figure 2)

S1 = 2f σ /σ f |γ0>1 = f u(1)(1−O(e−αγ0)) (13)

that is, the system goes onto a universal asymptotic trajectory, along which the rate of death
of pairs depends on their current numberN only. The global picture of ‘universalization’
is illustrated by figure 3, which depicts the phase portrait of the evolution of the trajectory
ĊHs = ϕ(N) with an increasing initial number of pairs. Figure 3(b) shows that an increase
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Figure 3. Trajectories ofĊHs = ϕ(N), calculated numerically atN0 = 10−3, 10−2, 10−1, 1, 10,
102, 103, 104, 105 (from left to right) and 108 (bold line) atp = 0 for (a) 1 = 8< 1r and (b)
1 = 102 > 1r. The region of trajectories outgoing onto the universal asymptotics is darkened
(initial transient sections witḣCHs < 0 are not shown).

of N0 within the weak nonlinearity regime(γ0 � 1) leads to a self-similar shift of the
trajectory in accordance with the scaling

ĊHs = N0G(N/N0)

(Max ĊHs ∝ N0,Nmax ∝ N0) resulting from the expression forCH . This continues until
strong nonlinearity comes into play and finally, when the thresholdγ u

0 ' 1 is achieved,
not only the asymptotics, but also all the decaying ‘branch’ of the trajectory together
with Max ĊHs become universal ‘simultaneously’. Thus atγ0 > γ u

0 ' 1 the reaction
‘erases’ the information on the initial distribution and creates itsown distribution which
predetermines universality of long-time asymptotics. Further growth inγ0 up to γ0 → ∞
results in progressing ‘universalization’ of the trajectory’s autocatalytic ‘branch’, until a
single universal trajectorẏCu

Hs is formed (figure 3, bold curve). Note that far from the
maximum (N/1 � 1) an increase inĊu

Hs on the autocatalytic ‘branch’ of this trajectory
in accordance with (2) obeys the laẇCu

Hs = (1−1c)ω
2
0/N ∝ N−1, which is indicated in

figure 3 by the line with slope−1 (within the limit γ0 → ∞ at N/1→ ∞ the adiabatic
approximation [2] remains correct at any1). The numerical calculations, which will be
presented in detail elsewhere [4], show that such a pattern takes place within the whole
range of 0< p < 1/4 , but with increasingp the value ofγ u

0 (p) is displaced toγ u
0 > 1.

Moreover, within the1→∞ limit the behaviour ofĊu
Hs beyond the maximum (N < Nmax)
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can be described by the scaling function

Ċu
Hs = 1F(N/1)

whence, taking account oḟCHs |N→0 ∝ N4p (11), it follows thatSu
1|1→∞ ∝ 11−4p.

In conclusion, in this letter a complete picture of long-time relaxation dynamics in
the catalytic reaction–diffusion systemA + B → 0 at arbitrary values of the number of
pairless particles1, ratio of species diffusivitiesp and initial number of pairsN0 has
been described. We have shown that, beyond the acceleration threshold, a sharp kinetic
transition fromuniversal synhronous relaxation to non-universal asynchronous relaxation
arises (p < pr,1 > 1r) and we have demonstrated numerically that there exists a typical
ratio of the initial number of pairs to that of pairless particles,γ u

0 , above which the long-time
asymptotics of the death of pairs becomes universal surprisingly abruptly. An exceptionally
interesting question has been left beyond the scope of our analysis. It is the question on
the character of variation of the death of pairs dynamic at the point of transition from the
autocatalytic stage to the stage of decaying growth ofCu

Hs (figure 3), which requires separate
consideration. Our preliminary results show that in the ‘thermodynamic limit’,1→∞, at
this point the relaxation rate of desorption fluxτ−1

J = −d lnJ/dτ increasesdiscontinuously,
i.e. a discontinuous transition in time arises in the system (‘flux breaking effect’), which
has no analogue in the literature. A detailed discussion of this transition is expected to be
presented in a future report.
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